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Abstract In western societies a huge percentage of the population suf-
fers from some kind of back pain at least once in their life. There are
several approaches addressing back pain by postural modifications. Pos-
tural training and activity can be tracked by various wearable devices
most of which are based on accelerometers. We present research on the
accuracy of accelerometer-based posture measurements. To this end, we
took simultaneous recordings using an optical motion capture system
and a system consisting of five accelerometers in three different settings:
On a test robot, in a template, and on actual human backs. We compare
the accelerometer-based spine curve reconstruction against the motion
capture data. Results show that tilt values from the accelerometers are
captured highly accurate, and the spine curve reconstruction works well.

1 Introduction

Lower back pain is one of the largest diseases in the United States. In fact,
31 million Americans experience lower back pain at any given time [1]. Thus,
lower back pain is the single leading cause of disability worldwide, according
to the Global Burden of Disease 2010. Back pain is one of the most common
reasons for missed work. In fact, back pain is the second most common reason for
visits to the doctor’s office, outnumbered only by upper-respiratory infections.
One-half of all working Americans admit to having back pain symptoms each
year [2]. Experts estimate that as much as 80% of the population will experience
a back problem at some time in their lives [3], and that back pain is the largest
single factor in the economical costs of $560-$635 billion per year attributed to
pain in the United States [4].

There is a wide variety of interventions. Starting from invasive methods, like
spinal fusion surgery, and laminectomy (decompression) surgery, over medic-
ations like cortisone injection, oral corticosteroids, or acetaminophen, to edu-
cation on posture, such as yoga, physical therapy, or postural modifications.
According to the crowd-sourcing platform HealthOutcome1, postural modifica-
tions are the highest rated interventions [5]. Capturing and analysing motion
data through training has become a standard procedure: Gait labs using motion

1 www.healthoutcome.org
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capture setups, force plates, and other sensor technology are common. However,
lab situations are not the best environment to capture and analyse a patient’s
natural behaviour. Thus, with emerging sensor technology, wearable devices were
included into training, bringing data capturing out of the lab. So far, studies re-
port varying results on the effectiveness of wearable devices for postural training
and monitoring: The authors of [6] found that using the UpRight2 device leads
to positive increases in awareness of posture, emotional well-being, and decreases
in pain symptoms. While the authors of a study based on the Lumo Lift3 device,
conclude [7]: “This study indicates that Lumo Lift is not suitable of giving pos-
ture feedback during lifting in daily life”. The above mentioned studies directly
focus on the impact on the user, without analysing the accuracy of the sensor
systems they use. Fathi and Curran [8] use three inertial sensors, distributed
over the lumbar and thoracic spine, to capture body poses. They focus on clas-
sification of various postures without assessing the quality of the captured data.
Thus, we focus on the accuracy of capturing posture in this work. Only if pos-
tural features are monitored accurately, devices will be able to provide valuable
data that can be enhanced to give useful feedback to the user.

The remainder of this paper is organised as follows: Section 2 gives an over-
view of the work related to motion capturing with various sensor systems. The
used sensor technology is described in Section 3. Section 4 explains how tilt
angles and positional data are computed from the used accelerometers. Our re-
cording setup and the dataset that our experiments are based on are described in
Section 5. An evaluation and the underlying measures are presented in Section 6.
We discuss limitations in Section 7 and conclude the paper in Section 8.

2 Related Work

Recording and analysing human motions is well established in a wide variety of
domains, such as computer animation, sport sciences [9], biology [10], and rehab-
ilitation [11]. Optical motion capturing using passive markers and a large array
of cameras has become the gold standard of capturing motions due to its high
temporal and spatial resolution and accuracy [12]. This recording technique al-
lowed the development of many enhanced applications analysing human [13,14]
and animal [15,16] motions. Large databases of motion data are freely avail-
able [17,18] and a variety of techniques to handle the increasing amounts of
available data have been developed [19,20,21,22]. To overcome the disadvant-
ages of complex hardware settings (number of cameras, 42 and more markers
need to be attached for full body capturing), the computer vision community
is developing many approaches to compute 3D reconstructions of human poses
without markers from single images of video sequences [23,24]. One orthogonal
approach records motions based on the data from body-mounted cameras [25,26].

The development of other sensor technologies allows for capturing without
cameras, and thus without the restrictions of a capturing volume. Therefore,

2 www.uprightpose.com
3 www.lumobodytech.com
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wireless EMG sensors and accelerometers have become popular and are used for
motion analysis [27,28,29].

Based on readings from accelerometers only, various techniques have been
developed to reconstruct [30,31,32,33] and classify [8,13,34] human poses and
motions. While the above mentioned methods are able to roughly reconstruct
full body motions on the basis of data from five three-axis sensors, in this work
we focus on an accurate reconstruction of only a part of the human body, namely
the curvature of the spine at the lower back.

3 Hardware

In this section we introduce the hardware employed in our recordings. We first
give a brief overview of the motion capture system. Subsequently we provide
more detailed information on the accelerometer-based system.

3.1 Motion Capture System

For the recordings, we used a ten-camera OptiTrack4 Flex 3 system. The cameras
operate at a resolution of 640×480 pixels. Throughout the recordings the frame
rate was set to 100 Hz. Passive, spherical, retro-reflective markers with a diameter
of 7/16 in (≈11 mm) were used. As output from the motion capture system we
received 3D marker trajectories, which needed further cleaning and labeling. See
Section 5.2 for details on these processes.

3.2 Wearable

The wearable device used in the scope of this work is the PostureSensei� (see
Figure 1) developed by Gokhale Method Enterprises5. While most posture wear-
ables include one device, this system consists of five individual sensor units that
are attached to the lower back of the user. With this approach it is possible to
capture more detailed data on a larger part of the spine. Compared to readings
from a single location on the body, several curvatures can be measured at once.
Although a five-sensor configuration has been used, the system is in principle
scalable to more or fewer sensors.

The five sensor units are technically identical and contain a three-axis ac-
celerometer, a Bluetooth LE (low energy) module and a lithium battery. All
sensors connect to one host (may be an iOS device or a computer) and stay
in an energy-saving state until the measurement is started. Sampling rates of
10 Hz, 25 Hz and 50 Hz can be configured from the host, suitable for slow motion
measurements like sitting, as well as faster movements such as brisk walking [30].
At 50 Hz sampling rate, a battery runtime of eight hours allows a full work day
of experimenting, while 10 Hz allow posture tracking for more than 24 h.

4 http://optitrack.com/
5 http://posturesensei.com
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Figure 1. Photos of the PostureSensei� sensor system. Four of five sensors are sitting
in the charger. A single sensor has the dimensions 33 mm × 16 mm × 10 mm and is
attached to a person’s back with double sided tape. The right images shows a sensor’s
local coordinate system.

With a programmable full-scale-range of ±2 g (up to ±16 g)6 and 10 bit res-
olution, a sensitivity of ±4 mg/LSB is achieved.

Keeping in mind that the wearables are used to reconstruct static postures
due to their orientation in space, and not the actual acceleration during the
movement, we shortly discuss the resulting angular resolution. To this end, it is
assumed that all postures are evaluated at rest and dominated by the earth’s
gravitational force. Hence the resulting force on all axes equals√

a2x + a2y + a2z = 1 g. (1)

In this situation, an angular resolution of roughly 0.2° is achieved. This has
proven to be sufficient for all conducted measurements.

Although being very versatile for motion tracking, one has to keep in mind
that with a three-axis accelerometer, rotational movements around the sensor
axis pointing to the earth’s centre of gravity can not be tracked.

4 Pose reconstruction

In this section we give an overview of how we reconstruct a curve as represent-
ation for the spine shape from the accelerometers’ data. First, we estimate the
orientation of each sensor. The orientations from all sensors are fed into a simple
model that is the basis of the spinal curve we display.

4.1 Sensor Orientation Estimation

Assuming the sensor is not moving, which is reasonable for static poses, the
sensor only measures acceleration due to gravity pointing downwards. In this
case the sensor’s forward tilt tacc is defined as follows:

tacc = arctan2 (az,−ay) (2)

Here, az denotes the measured acceleration in the sensor’s local z-axis, while ay
is the acceleration in the sensor’s local y-axis, as defined in Figure 1.

6 g ≈ 9.81 m/s2 is earth’s standard acceleration due to gravity.
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4.2 Spine Curve Computation

The spine curve is computed based on the sensor orientations. We restrict this
curve to 2D to give an easy-to-understand feedback on the user’s current posture.

Attaching the sensors to a person’s back with the help of an applicator,
the distance between each neighbouring pair of sensors is equal. Thus, we as-
sume equal distance in our model, too. The actual spine curve consists of two
components: The first component is a line representing the forward tilt of the
first (lowest) sensor. The second component consists of a series of arc segments
between pairs of neighbouring sensors. The number of arc segments totals four.

The arc segments between two sensors’ positions Pn and Pn+1 is computed
as follows: The tilt at the beginning and the end of the arc segments is defined
by the sensor’s forward tilts tacc,n and tacc,n+1. The included angle δn is the
difference between these two tilts: δn = tacc,n− tacc,n+1. The distance d between
the points is fixed and constant between all points in our model. From these
values, the arc is already completely defined. The radius r of the underlying
circle is defined as:

rn =
d

|δn|
(3)

The center Cn of the circle underlying the nth arc can be computed by:

Cn = Pn − rn ·
(

cos(tacc,n)
− sin(tacc,n)

)
(4)

The end point Pn+1 of the arc is computed by:

Pn+1 = Cn + rn ·
(

cos(tacc,n+1)
− sin(tacc,n+1)

)
(5)

In case the angle is less than the inherent sensor accuracy ∆δn ≈ 0.3° a
line is drawn instead of an arc segment, ∆δn =

√
(∆tacc,n)2 + (∆tacc,n+1)2.

PostureSensei� comes with an app for data visualisation. Some examples of the
reconstructed spine curves can be found in Figure 2.

5 Recording Setup and Datasets

We recorded three different scenarios (robot data, template data, human posture
data) with the PostureSensei� sensors (at 50 Hz) and the OptiTrack system (at
100 Hz). In order to spatially track the sensors, reflective markers were attatched
to the sensors. These were either single spherical reflective markers or groups of
four markers attached to a rigid body. The exact type and location of the markers
depended on the scenario. In combination, the recorded data consists of the 3D
positions of each marker or rigid body and the accelerometer data of each sensor
as well as the orientation of the rigid bodies in space (4D quaternion), where
applicable. The recorded datasets along with the marker setups are described in
more detail in the sections below and are illustrated in Figure 3.
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Figure 2. Screenshots from PostureSensei� app of some reconstructed spine curva-
tures, showing various shapes. A comparison of two curves is shown in the right image.

5.1 Datasets

Robot To test if the motion sensors correctly capture their orientation, we
devised some tests and mounted them vertically onto a rotatable robot arm
(see Figure 3a). We used a Lego Mindstorms robot from the EV3 series. In
order to track the robot arm’s oriention in space, four markers were attached
approximately equidistantly (13.5 cm apart from each other) to the robot arm.

We recorded two different scenarios: R380P10 and R360P10. R380P10 con-
sists of a 380° clockwise rotation of the motor attached to the robot arm followed
by a ten-second pause. These steps are repeated 24 times. In R360P10 the mo-
tor rotates by 360° clockwise and pauses ten seconds three consecutive times.
The rotation is executed at an average of 60 ° s−1. The ‘average’ arises from
the motor driving the arm accelerating at the beginning of each rotation and
decelerating to a stop at the end of each rotation.

y

z x

y

a) b) c) d) e)

Figure 3. Photos of the recording setups: a) Sensors and markers mounted on the
robot. b) Sensors, markers, and rigid body assets on the synthetic template. c) Sensors
on the lumbar spine of a person. d) and e) Side and back view of sensor positioning on
the lumbar spine (thick line) including directions of the sensor coordinate system.
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Template Here, the sensors were placed onto a 2.5 mm strong flexible PVC
foam board (template, see Figure 3b). With the sensors on the template, the
template was bent stronger than usually possible for the human back.

In this scenario, rigid bodies with four spherical reflective markers each, so-
called rigid body assets, were attached to three of the sensors. A single reflective
spherical marker was glued to both of the remaining sensors.

Human Posture Finally, we recorded trials with the sensors attached to a
person’s back as shown in Figure 3c. We only considered static standing poses.
In order to spatially track the sensors, a single reflective spherical marker was
attached to the centre of every sensor.

5.2 Data Preprocessing

The recorded optical motion capture data was cleaned and temporally aligned
with the accelerometer data before further processing. Data cleaning here refers
to the semi-automatic removal of inconsistent marker data and to the consistent
combination of marker data from different markers. The latter is necessary when
tracking individual markers. If the tracking system loses a marker, e.g. from
occlusion, it will treat it like a new marker as soon as it is no longer occluded
(it does not ‘know’ that it just met an old friend).

In order to compare the positional data recorded with the tracking system
and the tilt data tacc derived from the accelerometer data, we also compute tilt
angles from the tracking data. In case of rigid body tracking, the tilt topt can be
directly inferred from the recorded rotation data. In the robot arm scenarios we
treat the robot arm as a rigid body represented by the markers attached to it
(see limitations in Section 7). The tilt topt of the arm is computed with respect
to the tracking system’s up-vector u as the angle between u and the robot arm.
The robot arm is represented by an (oriented) line m. With 〈v,w〉 denoting the
dot product,

topt = arccos

(
〈u, m

||m||
〉
)
. (6)

Other processing steps before actually comparing data from the different
sources are filtering and downsampling of the OptiTrack data by a factor of
two, effectively reducing the sampling rate to match the 50 Hz of the Posture-
Sensei� data. For filtering we use a 220 ms- to 340 ms-windowed median filter
(spanning 11 to 17 samples at 50 Hz) followed by a moving average filter of the
same width. This removes noise from both signals. If not otherwise stated we
work with the filtered data sampled at (or downsampled to) 50 Hz.

6 Results

We recorded datasets covering a variety of poses and motions that call for dif-
ferent evaluation strategies depending on the respective data. These strategies
will be explained in more detail in Section 6.1. Results and their discussion can
be found in Section 6.2.
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Figure 4. Computed raw tilt values for four recordings of three scenarios. Data from
the OptiTrack system are shown in the left column, data from the PostureSensei� are
shown in the right column.

6.1 Evaluation Strategy

Dataset Robot, R380P10 For the R380P10 dataset, we will evaluate how
well the tilt computed for both systems (tacc for accelerometer data and topt
for tracking data) compares to one another. The data recorded in this setup,
especially in the raw accelerometer data and hence the derived tilt data (see
first row of Figure 4), exhibit strong fluctuations every time the robot stops. We
therefore, and because the arm oscillates for some seconds after stopping, extract
the first five of the last six seconds of each step detected by both systems and
compute the mean and standard deviation for each step as well as the overall
mean step size (see Table 1). We furthermore compute the difference topt − tacc
for each segment and sensor.

Dataset Robot, R360P10 This dataset was recorded in order to measure the
consistency of tacc and topt while moving. To this end, we divide the recorded
data into parts with positive, zero, and negative gradient and analyse the non-
constant segments.

In order to separate the tilt data into segments of equally signed gradients, we
compute the gradient ∇f of the (filtered) tilt data f and apply a moving average
with a fixed window width (of 340 ms) to ∇f . Using a threshold T = 0.5°, the
tilt data is divided into segments of positive (∇f > T ), negative (∇f < −T ),
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and zero (|∇f | ≤ T ) gradient. Due to clockwise rotation, R360P10 only exhibits
segments with zero and negative gradient (see second row of Figure 4).

We compute the Pearson correlation coefficient for each found segment with
negative gradient (Figure 6 left). The Pearson correlation coefficient measures
how much two signals are linearly related (e.g. by a constant offset):

rx,y =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
√∑n

i=1(yi − µy)2
(7)

where µx and µy are the mean of x and y and rx,y ∈ [−1, 1]. rx,y = ±1 represents
a complete positive/negative linear correlation. A value of 0 signifies that x and
y are not linearly correlated.

In order to gain insight of the magnitude of a potential offset between topt
and tacc we compute their difference topt − tacc.

Dataset Template In the evaluation of the template dataset, we proceed in
analogy to the evaluation of R360P10, but analyse each recording as a whole
(see third row of Figure 4 for raw tilt values). I.e. we compute the Pearson
correlation coefficient and the median, mean, and standard deviation, as well as
the absolute value of the tilt difference described above. The data is not split
into gradient-segments. Evaluations were carried out on a per-sensor basis.

Dataset Human Posture For the human posture dataset, we computed a 2D
spine curve from the accelerometer data as described in Section 4.2 for all frames.
All frames are leveraged to 3D. As a consequence, each sensor is represented by
a single 3D position. The recorded tracking dataset represents each sensor as
a single 3D position by setup design. In order to measure distances in the two
datasets we interpret each of them as ordered point clouds in space, Popt and
Pacc, both ordered by sensor and frame number. Each of the two point clouds
can be linearly transformed to best correspond to the other point cloud. We use
a Procrustes algorithm [35] to find the best fit of the two datasets. The best-fit
criterion is the minimum sum of squared distances of one point cloud Popt to
a scaled, translated, and rotated version P ′acc of the other point cloud Pacc. We
use Popt as the reference dataset because Pacc contains unit-less data and Popt

is measured in metric units of length.

The quality evaluation of the computed 2D curve data compared to the 3D
positions from the tracking data is performed on the aligned raw datasets Popt

and P ′acc. To this end we first draw n random samples and extract a window
of ±100 ms width around identical frames within both datasets (10 frames each
at 50 Hz). For a dataset of length l, n = l/5 random samples suffice to consider
each single frame on average twice. We then compute the point-wise Euclidean
distance of each corresponding pair of points in the two datasets within the
extracted window as well as their mean and standard deviation. These state
how well the best match of the two point clouds was. The distances and derived
quantities are measured in millimetres (see Table 4).
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Table 1. Dataset R380P10. Means (µ) and standard deviations (σ) in degree for each
detected step in the recorded robot data. The programmed rotation of the motor is
denoted by aα. For better readability we list only every fifth step.

sensor µ σ µ σ µ σ µ σ µ σ
ID data a0 a−100 a−200 a−300 a−400

topt 0.9 0.00 -82.6 0.01 -155.5 0.01 -240.9 0.00 -329.8 0.02
1 tacc -0.0 0.08 -82.4 0.07 -153.5 0.07 -242.4 0.07 -329.8 0.03
2 tacc 0.0 0.12 -82.4 0.05 -155.5 0.07 -241.6 0.05 -330.7 0.06
3 tacc 0.1 0.11 -82.9 0.07 -156.7 0.06 -241.1 0.07 -331.6 0.07
4 tacc 0.9 0.03 -82.9 0.03 -157.3 0.06 -240.9 0.04 -330.6 0.06
5 tacc 1.1 0.08 -82.3 0.08 -156.0 0.07 -240.8 0.03 -329.8 0.06

6.2 Results and Discussion

Dataset Robot, R380P10 Table 1 summarises the average tilt computed from
the acceleration sensors and from the tracking data in between each revolution
of the robot arm, which are in very good agreement to each other (constant
mean value and low standard deviations). The angles computed from neither
the OptiTrack data nor the PostureSensei� data match the step angle of −380°
programmed into the robot. As the overall mean offset between programmed
rotation and measured rotation lies around 3.4°, an average deviation of 1.61°
per−180° programmed rotation, the robot system can’t be used as a third system
to compare to (see limitations in Section 7).

We computed how much the tilt angles from OptiTrack and PostureSen-
sei� differ by computing the difference topt − tacc as shown in Figure 5. Angle
differences mostly lie within [−1°,+1.6°]. Only PostureSensei� sensor 1 deviates
slightly more from the OptiTrack data (by up to −3°) during seconds 100 to 180.
Reasons for this behaviour may include, that the robot arm is not a rigid body
(see limitations in Section 7). Nevertheless, the overall difference between the
two systems topt − tacc = 0.4°± 0.8° is statistically equal to zero.

Dataset Robot, R360P10 In the second part of the robot dataset, R360P10,
we compared non-constant segments of the data using the Pearson correlation
coefficient. Results are depicted in Figure 6 (left). The data decomposes into
three non-constant segments. These are the segments in Figure 4c when delet-
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restricted to segments with zero gradient.
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Figure 6. Left: Pearson correlation coefficient of data segments with negative gradi-
ent of R360P10-dataset. Right: Boxplot of the difference of tilt topt − tacc of all such
segments. Mean values are indicated by the small circles on the sides of each box, the
median is drawn as blue lines. Bars and boxes are grouped by sensor and sorted by
time of occurrence in the data. We used a standard boxplot as provided by matplotlib8.

ing the constant segments. The correlation coefficient is extremely high for all
segments and all sensors (minimum of 0.999995).

In addition to median and mean of the absolute difference of the accelerometer-
based tilt data and the tracking-based tilt data, the boxplot on the right in Fig-
ure 6 depicts the distribution of the data. This reveals that even if the two tilt
data series are highly correlated, their difference can still exhibit absolute fluc-
tuations of up to almost 2.5°. It also shows that the difference is centred around
−1.25° with respect to both, median and mean. Furthermore, the difference of
over half of the data is below 1.25°. More than 75 % of the differences are below
1.4°. Overall, the high similarity in shape – location of mean and median (all
almost centred) as well as size of the boxplots – suggests that the differences are
similarly distributed. This in turn implies a high level of consistency between
the data recorded with OptiTrack and the PostureSensei� sensors.

Dataset Template The template dataset was compared trial-wise as a whole
using the Pearson correlation coefficient as well as median, mean, and standard
deviation of the absolute difference of the tilt computed from tracking data and
from accelerometer data. For this dataset, we evaluated filtered and unfiltered
data. Table 2 lists the result of the correlation coefficient. Again, the correlation
coefficient is very high for all trials and for most sensors. In the first four takes,
the lower part of the template, containing sensor 1, was fixated to a flat surface,
and the template was gradually bent by lifting its upper side until it reached
an angle of approximately 90°. Therefore sensor 1 moves only minimally (see
Figure 4e and f), which explains the correlation coefficient of ≈ 0.5 as the data
is dominated by noise. For the rest of the takes and sensors the correlation coeffi-
cient of both data types recorded indicates that there is a very strong (positive)
linear relationship between the two tilt data series (filtered data minimum of
0.998, raw data minimum 0.957).

8 https://matplotlib.org/api/ as gen/matplotlib.pyplot.boxplot.html
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Table 2. Dataset template, all takes. Values of Pearson correlation coefficient grouped
by used data type. Left side: filtered data, right side: unfiltered, raw data.

sensor
take 1 3 5

t1f 0.592 1.000 1.000
t2f 0.587 1.000 1.000
t3f 0.587 1.000 1.000
t4f 0.537 1.000 1.000

sensor
take 1 3 5

t5f 1.000 0.998 0.999
t6f 1.000 0.999 0.999
t7f 0.999 0.998 0.999
t8f 1.000 0.999 0.999

sensor
take 1 3 5

t1r 0.475 1.000 1.000
t2r 0.485 0.999 1.000
t3r 0.542 1.000 1.000
t4r 0.364 0.999 1.000

sensor
take 1 3 5

t5r 0.991 0.957 0.992
t6r 0.995 0.988 0.993
t7r 0.991 0.975 0.984
t8r 0.996 0.979 0.987

The computation of several statistical measures, such as median, mean, and
standard deviation of the difference of the two tilt data series aimed at putting
that linear relation better into context (see Table 3). From the table we can see
that there is only slight variation in the average absolute difference of the two
data series. Deviations range from m = 0.1°, µ = 0.1°, and σ = 0.1° (filtered
data, take 6 sensor 1) to m = 2.0°, mu = 1.7°, and σ = 0.6° (filtered data, take
4 sensor 5). These values are equally low for raw data.

Because the overall mean of the absolute difference between the two data
series is a relatively abstract description of the underlying, absolute per-sample
difference, we also plotted a pair of data series together with their absolute
difference in Figure 7. For better readability we only included data from a single
sensor. The depicted absolute difference exhibits a throughout slightly higher
value when the tilt data exceeds 90° (e.g. seconds 1 to 10 and around second
25). This observed reocurring difference could be attributed to minor tracking
inconsistencies in the motion capturing in this range: When a registered rigid
body asset is rotated close to 90° in direction of the tracking system’s up-vector,
the rotation computed by the tracking system tends to jitter around 90°. Peaks
also occur shortly before and after constant segments. A likely cause for these
is the fact that the data is not perfectly temporally aligned. Hence directional
changes in the trajectory lead to higher errors in the two signals’ difference.

Dataset Human Posture For the last dataset, we evaluate how well the
computed 2D spine curve matches the 3D tracking data by measuring mean

Table 3. Dataset template, all takes. Median (m), means (µ), and standard deviations
(σ) (all in degree) of absolute difference of tilt from tracking data and tilt from accel-
erometer data (|topt − tacc|). Left side: filtered data, right side: unfiltered, raw data.

sensor 1 sensor 3 sensor 5
take m µ σ m µ σ m µ σ

t1f 1.3 1.1 0.7 1.3 1.4 0.3 1.6 1.7 0.4
t2f 1.2 1.0 0.6 1.2 1.3 0.3 1.5 1.6 0.5
t3f 1.3 1.2 0.8 1.5 1.4 0.4 1.9 1.7 0.5
t4f 1.2 1.2 0.8 1.4 1.5 0.6 2.0 1.7 0.6

t5f 0.6 0.8 0.8 0.9 1.1 0.7 1.4 1.4 0.8
t6f 0.1 0.1 0.1 0.3 0.4 0.4 0.2 0.7 0.9
t7f 0.5 0.5 0.4 1.0 0.8 0.4 0.9 1.1 0.8
t8f 0.5 0.7 0.7 0.9 1.0 0.6 1.3 1.3 0.8

sensor 1 sensor 3 sensor 5
take m µ σ m µ σ m µ σ

t1r 1.5 1.3 0.8 1.3 1.3 0.2 1.3 1.5 0.5
t2r 1.3 1.1 0.7 1.3 1.4 0.3 1.6 1.6 0.5
t3r 1.2 1.2 0.8 1.4 1.3 0.5 1.6 1.6 0.6
t4r 1.1 1.1 0.8 1.4 1.3 0.6 2.1 1.7 0.7

t5r 1.1 1.0 0.8 0.7 0.7 0.4 2.3 1.8 0.8
t6r 0.7 0.6 0.4 1.4 1.6 0.9 0.5 0.9 0.8
t7r 0.1 0.1 0.1 0.7 0.8 0.6 1.0 1.1 1.0
t8r 0.3 1.3 1.9 0.9 1.4 1.3 1.5 1.6 1.0
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Figure 7. Tilt from tracking data (topt, blue), from accelerometer data (tacc, orange,
offset by 15°) and their absolute difference (|topt − tacc|, green). For better readability
we plotted only one sensor.

distances and standard deviations of the two resulting point clouds several times
over different equally wide windows. Table 4 shows the resulting values. The
spread of values for mean distances from 1 mm up to 8 mm with an average
of µ = (3.4 mm ± 1.6 mm) are caused by the simplicity of the 2D spine curve
model which does not incorporate factors such as skin deformation. We would
like to point out that these values are obtained by comparing a set of 2D points
embedded into 3D space with the native 3D coordinates of the motion capture
system. The relatively small dispersion σ of usually less than 0.6 mm shows
the consistency of the accelerometer data and that an even better spine curve
representation can be reached by an improved model. Overall, these results show
that the spine curve reconstruction is reproducible and usually highly similar to
the OptiTrack recordings. This is also illustrated in Figure 8 where visually the
different reconstructions show very similar shapes.

7 Limitations

Limitations of the robot arm: As discussed in Section 6.2 the robot arm
rotation deviates substantially from the values programmed to the motor. The
arm is connected to the motor by a rubber band to minimise transferred vibra-
tions of the activated motor to the arm. The rubber band might slip when the
motor is activated, and amplify swinging after stopping the rotation. Thus, we
have to rely on the motion capture data. Additionally, the assumption of a rigid

Table 4. Dataset human posture, raw data. Mean and standard deviation (µ, σ) of
the Euclidean distance between two aligned spine curves per 2D/3D sensor/marker
position. si,j abbreviates sensor/marker j in segment i. Values are measured in mm.

s1,1 s1,2 s1,3 s1,4 s1,5 s2,1 s2,2 s2,3 s2,4 s2,5 s3,1 s3,2 s3,3 s3,4 s3,5 s4,1 s4,2 s4,3 s4,4 s4,5

µ 1.9 1.7 2.4 1.4 2.1 2.8 2.8 2.5 6.8 6.1 2.9 2.7 1.8 1.6 2.3 4.4 3.8 4.3 1.0 3.1
σ 0.3 0.2 0.3 0.3 0.5 0.3 0.1 0.7 0.8 1.1 0.5 0.5 0.6 0.6 0.8 0.3 0.3 0.4 0.4 0.5

s5,1 s5,2 s5,3 s5,3 s5,5 s6,1 s6,2 s6,3 s6,4 s6,5 s7,1 s7,2 s7,3 s7,4 s7,5 s8,1 s8,2 s8,3 s8,4 s8,5

µ 3.4 3.4 1.8 1.8 2.6 4.9 3.8 3.8 1.2 3.5 4.7 4.6 2.8 2.8 3.3 7.6 6.9 5.6 2.7 5.4
σ 0.6 0.5 0.6 0.7 0.9 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.4 0.8 0.5
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Figure 8. Aligned computed spine curves of various segments (orange lines) and 3D
positions of the sensors from OptiTrack (blue lines).

body is not entirely realistic as we observe a slight bending (< 2°) of the robot
arm due to gravity.

Limitations of the sensor system: The PostureSensei� system only meas-
ures accelerations. Thus, the estimation of the tilt angles only works well if relat-
ively static poses are considered. Otherwise, accelerations in any other direction
than gravity will influence the tilt computation and thus have an impact on
the displayed spine curves. However, for slow motions, like we measured on the
robot and on the template, tilt estimation worked well. More advanced sensors,
including magnetic field sensors or gyroscopes could be used to capture reliable
posture readings from dynamic motions.

Limitations of the pose reconstruction: Although the presented model
for pose reconstruction is simple, it yields very good results for the human pos-
ture data. An extended model could expand to 3D reconstruction and integrate
the flexibility in the human skin to even better approximate the actual shape
and further reduce the reconstruction error along the spine curve.

8 Conclusion and Future Work

In this paper, we reported on a series of experiments to evaluate if an accelerome-
ter-based wearable system can be used to accurately record the lumbar spine. As
baseline for the experiments we recorded data from both systems simultaneously.
Our main findings are:
1. Sensor tilt values can be captured with a very high precision (0.4°± 0.8° for

a single sensor), compared against motion capture data.
2. The computation of positional data works well (3.4 mm average deviation on

a curve of 30 cm length), despite the simplistic model employed.
3. The visual spine representation is meaningful for postural feedback.

Thus, we conclude, that PostureSensei� is capable of capturing the spinal cur-
vature for static poses accurately and provides valuable feedback to the user.

We are planning to do user studies on the effectiveness of wearable devices in
posture training in the future. Another interesting strand of research will be to
explore how far the accuracy of pose reconstruction can be improved by a more
advanced spine reconstruction model as well as adding more sensor modalities,
such as magnetic field or gyroscopes to the wearable sensor units.
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Popović, J.: Practical motion capture in everyday surroundings. ACM Trans.
Graph. 26(3) (July 2007)
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